پیشبینی فشار در شبکههای آبرسانی با استفاده از شبکههای عصبی مصنوعی و استنتاج فازی
Authors
Abstract:
فشار نقاط مصرف در شبکههای آبرسانی یکی از مهمترین پارامترهای هیدرولیکی است که میتواند در مدیریت بهینه شبکههای توزیع آب مورد استفاده قرار گیرد. از آنجاییکه فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورودی به شبکههای توزیع آب شهری به صورت نشت به هدر میرود. وجود نشت در شبکههای آبرسانی موجب اتلاف منابع و سرمایه صرف شده در تولید، انتقال، تصفیه و توزیع آب، ایجاد مشکلات کیفی در آب شرب به علت ورود آلودگی به شبکه توزیع آب از محل نشت و غیره میشود. با توجه به نقش حیاتی آب در زندگی و کمبود منابع آب قابل شرب و همچنین هزینههای گزاف فراهم نمودن آب شرب سالم، باید سعی شود تا تلفات آب به حداقل رسانده شود. برای این منظور و با توجه به تاثیر متقابل نشت و فشار بر یکدیگر، ابتدا لازم است تا در هر نقطه بتوان میزان نشت را با توجه به فشار موجود تعیین کرد. با توجه به قابلیتها و مزایای شبکه عصبی و سهولت استفاده از آن به عنوان یک ابزار کار، در این مقاله سعی شده تا مدل شبکه عصبی برای تعیین فشار در هر نقطه با توجه به ارتفاع مخزن، ارتفاع نقطه، و میزان مصرف با لحاظ کردن نشت موجود در آن نقطه تدوین شود. در این مقاله تغییرات فشار در قسمتی از شبکه توزیع آب شهر تهران با استفاده از مدل EPANET2.0 شبیهسازی شده است. برای این منظور از دو مدل شبکه عصبی و همچنین ترکیب شبکه عصبی با منطق فازی استفاده شده و نتایج حاصل از آنها با نتایج مدل تحلیل هیدرولیکی و نیز با یکدیگر مقایسه شده و توانایی مدلهای شبکه عصبی در پیشبینی فشار نشان داده شده است.
similar resources
پیش بینی فشار در شبکه های آبرسانی با استفاده از شبکه های عصبی مصنوعی و استنتاج فازی
فشار نقاط مصرف در شبکه های آب رسانی یکی از مهم ترین پارامترهای هیدرولیکی است که می تواند در مدیریت بهینه شبکه های توزیع آب مورد استفاده قرار گیرد. از آن جایی که فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورو...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
full textپیش بینی میزان مصرف برق میان مدت در ایران با استفاده از شبکههای عصبی مصنوعی
انرژی برق به عنوان یکی از مهمترین انرژی ها در زندگی مدرن امروزی به حساب می آید و در سطح رفاه اجتماعی و همچنین کیفیت و راندمان کار و تولید بسیار موثر می باشد. با توجه به اهمیت انرژی برق دولت ها و سازمان های وابسته به آن ها در کشورهای توسعه یافته و در حال توسعه، بر روی پیش بینی مصرف برق توجه بسیار زیادی می کنند. اشتباه در پیش بینی مصرف برق می تواند موجب ایجاد ظرفیت های اضافی و یا کمبود در تامین ب...
15 صفحه اولMy Resources
Journal title
volume 16 issue 1
pages 3- 14
publication date 2005-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023